Zbigniew Bromberek

ECO-RESORTS
PLANNING AND DESIGN FOR THE TROPICS
Contents

About this book ix
Acknowledgements x
List of figures xi

Part One • Eco-tourism and the Tropics

1.0 A question of sustainability 3
1.1 Tropical tourism and tropical eco-tourism: scale and trends 7
1.2 Delineation of the tropics 11
 1.2.1 Tropical climates and the building 12
 1.2.2 Ecology of the tropics 18
1.3 Operational issues in eco-friendly resort design 21
 1.3.1 Energy management 23
 1.3.2 Water management 30
 1.3.3 Waste and pollution management 32
 1.3.4 Impact of building materials and construction technology 35
 1.3.5 Impacts from tourist presence in the area 39
1.4 Eco-tourism rating schemes 43

Part Two • Indoor Environment Control in the Tropics

2.0 A question of comfort 47
2.1 Thermal environment control 53
 2.1.1 Heat flows 57
 2.1.2 Air movement 69
 2.1.3 Humidity 76
2.2 Visual environment control 79
 2.2.1 Artificial lighting systems appropriate for a tropical eco-resort 86
2.3 Acoustic environment control 87
 2.3.1 Noise pollution and effective countermeasures 88
2.4 Control of smell, touch and psychological factors in environmental perceptions 91
Part Three • Tropical Eco-resort Design

3.0 A question of environmental response 95
3.1 Location 99
3.2 Site planning 101
 3.2.1 Hill influence 101
 3.2.2 Sea influence 101
 3.2.3 Vegetation influence 102
 3.2.4 Spatial organisation 102
3.3 Constructional design 109
3.4 Building design 111
 3.4.1 Building layout 111
 3.4.2 Envelope design 112
 3.4.3 Building fabric 121
3.5 Functional programmes 129
3.6 Room design 133
3.7 Resort operation in planning and design objectives 137

Part Four • Case studies

4.0 A question of practicality 141
4.1 Jean-Michel Cousteau Fiji Islands Resort 145
 4.1.1 In their own words 145
 4.1.2 Site selection and landscaping 146
 4.1.3 Construction and materials 146
 4.1.4 Energy management 147
 4.1.5 Water management 147
 4.1.6 Waste management 149
 4.1.7 The control of other impacts 149
 4.1.8 The resort's climatic performance 150
 4.1.9 Concluding remarks 151
4.2 Are Tamanu Beach Hotel and Muri Beach Hideaway 153
 4.2.1 In their own words 153
 4.2.2 Site selection and landscaping 153
 4.2.3 Construction and materials 154
 4.2.4 Energy management 156
 4.2.5 Water management 159
 4.2.6 Waste management 160
 4.2.7 The resort's climatic performance 160
 4.2.8 Concluding remarks 160
4.3 Sheraton Moorea Lagoon Resort & Spa 163
 4.3.1 In their own words 163
 4.3.2 Site selection and landscaping 163
 4.3.3 Construction 163
 4.3.4 Operational energy 166
 4.3.5 Water management 166
 4.3.6 Waste management 166
 4.3.7 The resort's climatic performance 166
 4.3.8 Concluding remarks 169
4.4 Bora Bora Nui Resort & Spa 173
 4.4.1 In their own words 173
 4.4.2 Site selection and landscaping 176
At the time of writing this book society faces a looming problem of global warming, seen by many as the consequence of ignoring warning signs over many years of industrialisation. It appears that emissions of carbon dioxide and other civilisation by-products into the atmosphere have added to other factors with disastrous effect for the entire world. In truth, the signs of global warming have come upon us more quickly than even the pessimists could have predicted. Yet, we do not actually know what causes global warming – we can at best take an educated guess. The fact remains, though, that global warming is a reality.

In our field of architecture, we could be contributing to the environmental problems facing the planet more than others. We have known for many years that we should be paying greater heed to the way we design and construct, so that the resultant impact on the environment is minimal. Building is an irreversible activity, leaving – directly and indirectly – a permanent mark on the Earth. Yet we choose simplistic solutions to complex problems and we let economic imperatives override any pricking of the conscience that our current design practices might be generating. With the new awareness of the world that we are gaining through intensive scientific studies, we have a duty to understand the ramifications of what we are doing.

We are part of the world – an important part, yes, but only a part. Most of our present-day efforts to achieve ‘sustainability’, as I see them, are anthropocentric and inherently flawed. They are a highly tangible manifestation of our interference with systems we know very little about. At the moment, we apply our limited knowledge to preserve what we believe is worth having – according to our own priorities, presumed importance or perceived needs. There is something fundamentally wrong with even a mere suggestion that we improve the world.

Indeed, the very notion of ‘improving’ the world seems bizarre: improving it for whom or for what? Unless, that is, we are prepared to openly admit that we are not doing it for the world in its entirety, but for ourselves and ourselves only – in our selfish and egocentric pursuit of our current convictions. Nothing more and nothing less...

This book is about planning and design in one of the most fragile environments on Earth: the tropics. It does not offer, least prescribe, solutions that would deliver a sustainable outcome. Nevertheless, it does invite using caution to protect what remains unchanged and to build in a way that makes as little impact as possible. It asks you to make good use of existing local resources before reaching for more of them, further away from the places of their use. It also argues that we should take only what we really need from this environment, leaving the rest untouched. Inherent in eco-tourism is the paradox of drawing on pristine environments and thus causing the inevitable loss of their principal quality: their unspoilt purity.

I would like to see all eco-resort developers in the tropics tread lightly, eco-resort operators and users to scale down their demands and adapt to the conditions, and eco-resort planners and designers to utilise the acquired knowledge in drafting their responses to the tropical setting. I would advocate a broad use of the precautionary principle: a process in which we weigh up the long-term consequences of our actions, refraining from, or at least limiting, activities that may cause irreversible change. We must proceed cautiously because, even with the best intentions, it is possible that actions we take now, well-informed as they may now seem to be, may in future turn out to be deleterious to the environment. Together, using this respectful and considerate approach, we can save the beauty and diversity of the tropics for ourselves and for the generations to come.

Zbigniew Bromberek
No work of this kind can be done in solitude. I am grateful to all of those who were helpful during the process of working on this manuscript.

In particular, I am indebted to Hon. Reader Steven V. Szokolay AM, my mentor and friend, who struggled through the text providing constructive criticisms and generously sharing his knowledge with me. He also offered considerable encouragement, without which the work would never have been finished.

My very special thanks go to Dorota – my partner, research assistant, editor, compiler, secretary and patient reader of the manuscript. Without her tangible help and intangible support nothing would have been possible.

My appreciation goes also to the editorial staff at the Architectural Press – for their persistence and for putting up with my self-doubts and all the delays and inventive excuses I offered.

There were also others who offered their time and effort to help. Thank you all.
List of figures

Part One

Figure 1.1 Environmental pressures from tourist developments in Australia
Figure 1.2 Various environments globally and nature-based tourism market share
Figure 1.3 Locations of eco-tourist resorts around the world
Figure 1.4 Tourist numbers globally and nature-based tourism market share
Figure 1.5 Distribution of tropical climate types
Figure 1.6 Maximum and minimum temperature, humidity and rainfall averages for northern, equatorial and southern tropical locations
Figure 1.7 Position of the coastal tropics among all tropical climates
Figure 1.8 Distribution of tropical climatic zones in Australia
Figure 1.9 Range of climatic conditions found in macro-, meso- and microclimates
Figure 1.10 Calculation of the ‘hill factor’ (modified ‘tropical’ version of the Sealey’s [1979] proposal)
Figure 1.11 Calculation of the ‘sea factor’
Figure 1.12 Coastal zones for analysis of local conditions
Figure 1.13 Hierarchy of human needs according to Vitruvius and Maslow
Figure 1.14 Hierarchy of operational objectives in energy and waste management
Figure 1.15 Energy system selection process
Figure 1.16 Energy source classification
Figure 1.17 Various energy sources, their costs and environmental impacts
Figure 1.18 Main sources of grey water
Figure 1.19 Benefits of a waste minimisation programme
Figure 1.20 Lifespan of various building elements
Figure 1.21 The EIA process and corresponding development project stages

Part Two

Figure 2.1 Resort design as a compromise between human needs and environmental constraints
Figure 2.2 Tropical clothing insulation values
Figure 2.3 Various body cooling mechanisms (tropical values)
Figure 2.4 Various activities and corresponding metabolic rates
Figure 2.5 Resort unit’s use in the context of other tropical buildings
Figure 2.6 Attitudes towards the climate among residents and tourists in the tropics
Figure 2.7 Psychrometric chart
Figure 2.8 Bioclimatic chart developed by Olgyay (1963) adjusted for tropical eco-resort environment
Figure 2.9 Environmental conditions vary to a different degree with different measures used to control them
Figure 2.10 Cooling strategies in thermal environment control
Figure 2.11 Components of solar irradiation
Figure 2.12 Self-shading of the wall
Figure 2.13 Rule of thumb: an overhang’s size is effective in shading most of the wall area from high altitude sun
Figure 2.14 The greenhouse effect
Figure 2.15 Shading should be sought from both vegetation and landforms
Figure 2.16 Ventilated attic
Figure 2.17 Various structural cooling methods (see text for description)
Figure 2.18 Roof pond technology
Figure 2.19 Time lag and decrement factor
Figure 2.20 Time lag and decrement factor in relation to element thickness
Figure 2.21 Newton’s Cooling law
Figure 2.22 Ground temperature variability at different depths
Figure 2.23 Thermal performance of lightweight and heavyweight structures
Figure 2.24 Ground tube cooling
Figure 2.25 Estimated minimum air speed required to restore thermal comfort for a range of air temperatures and relative humidity values
Figure 2.26 Surface conductance as a function of wind speed
Figure 2.27 Effectiveness of stack/single-sided ventilation and cross-ventilation expressed as the recorded indoors air speed
Figure 2.28 Cross-ventilation is facilitated by areas of positive and negative pressure around buildings
Figure 2.29 Recommended orientation for best ventilation results
Figure 2.30 Irrespective of roof pitch, the ridgeline experiences negative pressure (suction) also known as the ‘ridge’ or ‘Venturi’ effect and this can be utilised to induce air extraction (compare with Figure 3.17)
Figure 2.31 Wind gradient in various terrains
Figure 2.32 Solar chimney principle
Figure 2.33 Trombe-Michel wall’s cooling action
Figure 2.34 Recommended location of fly-screens
Figure 2.35 Contrast (brightness ratio) can vary from a barely distinguishable value of 2:1 to an unacceptable value of 50:1 which excludes everything else in the field of view
Figure 2.36 Daylighting principles
Figure 2.37 Shading principles: marked in the diagram are the ‘exclusion angles’ where the shade is effective
Figure 2.38 External reflections: plants in front of openings prevent most of the unwelcome reflections
Figure 2.39 Light shelves are quite effective in providing sufficient daylighting levels without associated glare
Figure 2.40 Prevention of solar heat gains requires not only eaves or overhangs but, preferably, shading the entire building envelope, which can be done with vegetation as well as a ‘parasol’ roof and double-skin wall systems
Figure 2.41 Louvres in lighting control
Figure 2.42 Heat transfer through ordinary glass
Figure 2.43 Effect of various sound barriers
Figure 2.44 ‘Mass law’ of sound insulation
Figure 2.45 Built environment design in a biotechnological model of environmental adaptation

Part Three

Figure 3.1 Every large body of water acts as a heat sink during the day
Figure 3.2 Temperatures recorded over different surfaces
Figure 3.3 Flow of air around a group of buildings
Figure 3.4 Recommended orientation for best shading effects
Figure 3.5 Comparison of air speed inside when related to incident wind direction (Givoni, 1962)
Figure 3.6 Comparison of air speed inside the room achieved by varying inlet and outlet sizes
Figure 3.7 High-branched trees, such as palms, provide shade and let the air flow freely around the building
Figure 3.8 ‘Cooling path’ provided for the breeze before it enters the building. Hard surface heats the air, which rises drawing more air through the building
Figure 3.9 a–e Use of vegetation in redirecting airflows through the site
Figure 3.10 Section showing the principle of a hybrid structure
Figure 3.11 Building layouts: a. double-sided, b. clustered, c. branched-out, d. single-bank
Figure 3.12 Theoretical set of four guest units incorporating some of the recommended features (parasol roof, ridge vents, raised floor, entire eastern and western wall shades): plan, section and elevations
Figure 3.13 a–c Shading that would be required to continuously shade the area shown in grey: a. at the equator; b. at 8°N; c. at 16°N (Brown and DeKay, 2001)
Figure 3.14 The ‘Parasol roof’ principle: the ventilated void under the external skin stays at a temperature close to the ambient temperature; placing reflective insulation on the internal skin greatly reduces gains from the radiative heat flow
Figure 3.15 A parasol roof can be used in night ventilation
Figure 3.16 A parasol roof on a guest unit at Amanwana Resort, Indonesia
Figure 3.17 Roof vents and monitors utilise suction near the roof ridge (Venturi effect)
Figure 3.18 Examples of roof monitors ‘La Sucka’ and ‘Windowless night ventilator’ (based on FSEC, 1984)
Figure 3.19 Various shapes of roof monitors (based on Watson and Labs, 1983)
Figure 3.20 As a rule of thumb, lighter colouring of the roof surface produces its lower temperature
Figure 3.21 Wall shading by vegetation
Figure 3.22 Double-skin thermal performance depends on its ventilation and surface qualities
Figure 3.23 Heat gain reduction achieved with the use of various shading methods
Figure 3.24 Vegetation near a building is capable of affecting airflows through nearby openings
Figure 3.25 Cooling the building with flowing air
Figure 3.26 Roof surface temperature for various roof colours (absorptance), at air temperature T = 30°C and global solar radiation G = 1 kW/m²
Figure 3.27 Sound absorption characteristics of some typical absorbents
Figure 3.28 Section through a staggered stud acoustic wall
Figure 3.29 Time of use and volume of various resort rooms
Figure 3.30 Function vs. thermal conditions adjustment
Figure 3.31 Typical sizes and layouts of resort units for 2–3 people: a. high-grade; b. mid-grade; c. budget
Figure 3.32 Air wash achieved in various configurations of openings
Figure 3.33 Airflow through the plan with partitioning walls
Figure 3.34 Airflow can be vertically redirected by a variety of controlling measures

Part Four

Figure 4.1 Summary of environment-friendly features in the case study resorts; building level and resort level
Figure 4.1.1 General view of the resort from its pier. Traditional thatched roofs blend well with the tropical island surroundings
Figure 4.1.2 Plan of the resort (courtesy of the JMC Fiji Islands Resort)
Figure 4.1.3 *Bures* (guest units) strung along the shoreline enjoy good sea breezes and visual privacy

Figures 4.1.4–5 Thatched roof over the dining area; constructed, maintained and repaired by the local craftspeople

Figure 4.1.6 Dining halls at the JMC resort are open-air traditional Fijian structures. The pool deck also doubles as a dining space at dinner time

Figures 4.1.7–8 The design of individual guest units is based on traditional Fijian houses. Their high cathedral ceilings, lightweight thatched roofs and generous louvred windows on both long sides ensure an excellent thermal environment even without air-conditioning

Figure 4.1.9 The extent of the resort's potential environmental impacts. (Note: The extent of the resort's impacts [ranging from positive through neutral to negative] should be read in conjunction with the information in Figure 4.1)

Figure 4.2.1 Both the Are Tamanu and the Muri Beach Hideaway share the same bungalow design; the resorts differ in size, positioning, some material and operational details as well as in landscaping design

Figure 4.2.2 The Muri Beach Hideaway started as an ordinary suburban block. The original house is still in use as the owner/manager's accommodation, storage space and a service block

Figures 4.2.3–4 The Are Tamanu resort's *are* or bungalow design is the original, on which the Muri Beach Hideaway's bungalows were based; sharing the same envelope, a few modifications appear in the Muri Beach Hideaway floor layout and material solutions

Figures 4.2.5–6 Large shaded verandas (Are Tamanu) and single-skin plywood walls (Muri Beach Hideaway) ensure a thermal environment within the comfort range during most of the year

Figure 4.2.7 High quality plywood walls do not require finishing on the inside and their maintenance is inexpensive and easy (Muri Beach Hideaway)

Figures 4.2.8–9 Instantaneous gas heaters were found to be the cheapest and most reliable means of water heating at the Muri Beach Hideaway; energy savings are achieved by using solar-powered lighting of the site

Figures 4.2.10–12 Are Tamanu's landscape design is quite typical yet efficient in the use of the narrow block of land; a central communication spine services two rows of bungalows with a beach café-bar, pool and deck at its ocean end

Figures 4.2.13–14 The Muri Beach Hideaway replicates the basic layout of the communication scheme: a walkway services a single file of guest units due to the narrowness of the site

Figures 4.2.15–16 Site edges in the two resorts represent very different approaches serving the same purpose of securing acoustic privacy and safety for the guests: Are Tamanu has a stone wall while the Muri Beach Hideaway hides behind a dense vegetation along a stream

Figure 4.2.17 The extent of the resorts' potential environmental impacts (Note: The extent of the resort's impacts [ranging from positive through neutral to negative] should be read in conjunction with the information in Figure 4.1)

Figure 4.3.1 Like many other Polynesian resorts, Sheraton Moorea Resort & Spa offers accommodation in over-water individual bungalows

Figure 4.3.2 Plan of the resort (courtesy of Sheraton Moorea Lagoon Resort & Spa)

Figure 4.3.3 Open water ponds and pools cool the reception area and adjacent restaurant

Figure 4.3.4 The architecture of all bungalows at the resort relates to local traditions not only in form and colour but also choice of materials, with prominent pandanus thatch and extensive use of timber

Figure 4.3.5 Detail of bamboo wall cladding
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.6</td>
<td>Detail of roof thatch seen from the interior</td>
</tr>
<tr>
<td>4.3.7</td>
<td>All bars and restaurants at the resort are open air to allow cooling sea breezes</td>
</tr>
<tr>
<td>4.3.8–9</td>
<td>Guest units feature high cathedral ceilings, numerous openings and open-plan design for ease of ventilation (Figure 4.3.8 courtesy of Sheraton Moorea Lagoon Resort & Spa)</td>
</tr>
<tr>
<td>4.3.10</td>
<td>The reception area is naturally ventilated; stone and tiles are easy to maintain and help in moderating temperatures</td>
</tr>
<tr>
<td>4.3.11–12</td>
<td>Siting of beach and over-water bungalows exposes them to cooling sea breezes</td>
</tr>
<tr>
<td>4.3.13</td>
<td>The extent of the resort’s potential environmental impacts. (Note: The extent of the resort’s impacts [ranging from positive through neutral to negative] should be read in conjunction with the information in Figure 4.1)</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Aerial view of the Bora Bora Nui resort with the main island of the atoll in the background</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Plan of the resort (courtesy of Bora Bora Nui Resort & Spa)</td>
</tr>
<tr>
<td>4.4.3</td>
<td>View of the resort from the sea</td>
</tr>
<tr>
<td>4.4.4–5</td>
<td>Pathways and boardwalks are used by both pedestrians and light maintenance vehicles</td>
</tr>
<tr>
<td>4.4.6</td>
<td>The 600 m long artificial beach was built with sand dredged from the atoll’s shipping channel</td>
</tr>
<tr>
<td>4.4.7–8</td>
<td>Details of roof structures suggest their inspirational origins</td>
</tr>
<tr>
<td>4.4.9–10</td>
<td>Bora Bora Nui’s claim to be ‘the most luxurious resort in the South Pacific’ is based on generosity of space offered to guests, quality of finishes and standard of service</td>
</tr>
<tr>
<td>4.4.11</td>
<td>Barge ready to take resort rubbish to a communal tip on the main island</td>
</tr>
<tr>
<td>4.4.12</td>
<td>The indoor environment of all guest units is hugely influenced by the sea</td>
</tr>
<tr>
<td>4.4.13</td>
<td>Resort designers sought to incorporate local Polynesian motifs as a link to and continuation of the regional traditions</td>
</tr>
<tr>
<td>4.4.14</td>
<td>Bungalow design encourages guests to stay in the open where the tropical climate seems gentle and comfortable to face</td>
</tr>
<tr>
<td>4.4.15–18</td>
<td>All resort restaurants and bars offer al fresco dining both during the day and at night (Figures 4.4.17–18 courtesy of Bora Bora Nui Resort & Spa)</td>
</tr>
<tr>
<td>4.4.19</td>
<td>The extent of the resort’s potential environmental impacts. (Note: The extent of the resort’s impacts [ranging from positive through neutral to negative] should be read in conjunction with the information in Figure 4.1)</td>
</tr>
<tr>
<td>4.5.1</td>
<td>General view of the Mezzanine from the water edge; retaining wall protecting the escarpment against storm surges is clearly visible as are wind turbine and solar panels</td>
</tr>
<tr>
<td>4.5.2</td>
<td>The freshwater pool in the guest unit deck stays in the shade for most of the time</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Generous mezzanine space directly under the restaurant’s roof doubles as a resort lounge</td>
</tr>
<tr>
<td>4.5.4</td>
<td>View of the resort from its mezzanine; the relatively narrow room is well cross-ventilated and naturally lit during the daytime</td>
</tr>
<tr>
<td>4.5.5</td>
<td>The wind turbine complements the PV array; however, winds in the area are often too strong or too weak for its efficient operating range</td>
</tr>
<tr>
<td>4.5.6</td>
<td>The principal source of power is a set of 20 photovoltaic panels above the roofs of guest units</td>
</tr>
<tr>
<td>4.5.7</td>
<td>Standard dual flush toilets generate enough liquid waste for the created wetland to be viable</td>
</tr>
<tr>
<td>4.5.8–9</td>
<td>Guest rooms rely chiefly on natural airflows through cross-ventilation; louvred openings are strategically positioned at bed level and the unglazed (permanent) ones, across the room, in circulation space</td>
</tr>
</tbody>
</table>
Figures 4.5.10–11 Room height allows for vertical air movement and sensible cooling through stack effect ventilation making the indoor environment thermally comfortable

Figure 4.5.12 The two parts of the resort – the guest unit one (on the left) and restaurant/office (on the right) – are separated, which, together with background noise from the breaking waves, ensures favourable acoustic conditions

Figure 4.5.13 The extent of the resort's potential environmental impacts. (Note: The extent of the resort's impacts [ranging from positive through neutral to negative] should be read in conjunction with the information in Figure 4.1)

Figure 4.6.1 Balamku Inn comprises guest units housed in single- and double-storey buildings

Figure 4.6.2 Plan of the resort

Figure 4.6.3 The largest building contains the reception, resort dining room and kitchen, with the office and owner/operator accommodation on the upper floor

Figures 4.6.4–5 Second-storey units benefit from high cathedral ceilings allowing hot air to rise under the roof; ground floor units have their thermal environment shaped by the openness of the plan and staying permanently in the ‘shade’ of the upper floor

Figure 4.6.6 The resort's dining room has substantial thermal mass and stays comfortably cool even in hot weather conditions

Figure 4.6.7 A ‘mosquito magnet’, which attracts and captures mosquitoes, helps to control the insect problem on site

Figure 4.6.8 Small on-demand hot water heater

Figure 4.6.9 Positioning a holding tank on the roof provides gravity, thus pressurising the system

Figure 4.6.10 Each building has its own composting toilet unit

Figure 4.6.11 The created wetlands are used for purifying grey water from sinks and showers

Figure 4.6.12 Rooms are decorated with work by local artisans

Figures 4.6.13–14 Resort buildings are built relatively close to each other leaving a large tract of land reserved for the resort’s conservation effort

Figure 4.6.15 The extent of the resort’s potential environmental impacts. (Note: The extent of resort’s impacts [ranging from positive through neutral to negative] should be read in conjunction with the information in Figure 4.1)

Figure 4.7.1 The super-low weight of KaiLuumcito structures allows them to sit right on the beach

Figure 4.7.2 The main reason for bringing the resort to its current site was the natural lagoon and its wildlife

Figures 4.7.3–4 The KaiLuumcito accommodation is provided in tentalapas – a combination of specially designed tents shaded by palapas (traditional Mexican roofed structures without walls)

Figures 4.7.5–6 The resort structures have been erected using traditional local building techniques and the expertise of the local labour force

Figure 4.7.7 The resort’s lounge in the main palapa has walls made with sticks arranged to provide visual privacy of the area

Figures 4.7.8–9 Toilet blocks are rather conventional except for lighting, which comes from oil lamps; washing rooms are external parts of the toilet block entirely open to the air

Figure 4.7.10 Diesel torches are lit at dusk and provide lighting until fuel burns out

Figure 4.7.11 All structures at the resort utilise natural materials in their simplest unprocessed form
List of figures

Figure 4.7.12 General view of the KaiLuumcito shows both toilet blocks and a file of tentalapases along the beach

Figures 4.7.13–14 Both the kitchen and the dining hall are housed in the main palapa of the resort; neither room has walls

Figure 4.7.15 The history of KaiLuumcito commenced in 1976; the resort has been devastated several times by major cyclones and has required rebuilding

Figure 4.7.16 The extent of the resort’s potential environmental impacts. (Note: The extent of resort’s impacts [ranging from positive through neutral to negative] should be read in conjunction with the information in Figure 4.1)

Figure 4.8.1 The resort’s main draw card is the fact that it is located next to the world famous Mayan ruins of Chichén Itzá

Figures 4.8.2–3 Accommodation at the resort is offered in buildings that housed the 1920s archaeological expedition to the area; the structures were erected chiefly with stone recovered from the ancient city

Figure 4.8.4 The buildings have been ‘recycled’: the original building envelope was retrofitted with all modern conveniences and the interior brought up to modern standards

Figure 4.8.5 The single-line tram was used by early twentieth-century tourists and awaits restoration

Figure 4.8.6 Al fresco dining is offered at the main house of the Hacienda, which was built for its Spanish owners in the eighteenth century

Figure 4.8.7 The change of character from a former cattle ranch to a tourist resort is most visible in the landscaping design; view from the restaurant deck towards one of the accommodation buildings

Figure 4.8.8 The Hacienda has undertaken a massive effort of re-vegetating degraded parts of the property with indigenous plants, giving employment to the local villagers in the process

Figure 4.8.9 The property has its own historic attractions including a small church built by the Spaniards in the seventeenth century

Figure 4.8.10 The extent of the resort’s potential environmental impacts. (Note: The extent of resort’s impacts [ranging from positive through neutral to negative] should be read in conjunction with the information in Figure 4.1)
The world’s tropical zone extends to approximately 4000 km north and 3500 km south of the equator and covers one third of the Earth’s land surface: in total it takes in over 50 million square kilometres. Globally, the tropical lands have a coastline of over 60,000 kilometres attracting millions of tourists every year with these numbers rising dramatically in recent times. Consequently, more tourist and recreational infrastructure in the tropics is increasingly needed and tourist resorts have started moving also into previously undeveloped areas.

Meanwhile, up until the 1980s, the emphasis of any tourist development in the tropics was on primary resources, such as the beach and the sea; the contribution which accommodation can make to successful holidays was neglected. This situation has obviously changed. Facilities built for tourists have to be designed to cope with the climatic stress of the tropics yet must provide a lifestyle compatible with tourists’ requirements, and do it in the most economical way. Furthermore, although a vast majority of the travellers come from developed countries, most tourist-attracting tropical areas are in developing countries of the third world.

This dichotomy causes or contributes to many undesirable phenomena that follow tourism developments in such regions. And yet, many of them seem easily avoidable by correct interpretation of, and response to, the visitors’ expectations. Ever increasing portions amongst them are tourists who want to get closer to the nature and culture of the region whilst at the same time being conscious of the need to preserve what is left of it. This desire gave rise to the eco-tourism movement more than 30 years ago. Today eco-tourism is coming of age, being the fastest growing segment of the tourist industry. Our environmental concerns are more and more often reflected in choices that we make about the way we spend our holidays. Eco-tourism is an expression of this trend.

The events surrounding the last of a three-decade long series of nuclear tests in French Polynesia clearly demonstrated a heightened environmental awareness in the region and in the world. In Australia, an attempt to develop a resort in an environmentally sensitive area of the Whitsunday Passage met with a similar reaction of concern from the public. These stories are repeated around the tropical world, from Yucatan to Borneo and from the Bahamas to the Amazon basin. Nevertheless, it seems unlikely that developments, and tourist developments in particular, in all sensitive environments will be stopped or prevented. In some of them, and eventually in most of them, tourist infrastructure will be developed. This will, most certainly, be followed by unavoidable impacts, which these establishments will make, on the environment. It is up to resort planners, designers and operators to make such impacts the least possible or, at the very minimum, the least damaging.

It is said that architecture reflects needs, desires, customs, attitudes and aspirations present in society. There are then a number of reasons for which eco-tourist resorts should display an environment-friendly attitude. An efficient passive climate control, providing indoor environmental comfort in the resort, could effectively propagate solutions based broadly on non-powered passive techniques. Many tourists, and certainly the vast majority of eco-tourists, would be happy to try to adjust to the given climate conditions at the holiday destination they have chosen. It is not true that the tropical climate is unbearable. It is equally not true that passive architecture cannot cope with the conditions found in the tropics. Passive climate control will not secure constant low temperature as powered air-conditioning can do. However, the need for constant temperature is at least questionable. Adaptation is apparently much healthier than desperate efforts to insulate the building and its occupants from climatic impacts. It is also much healthier and more sustainable. Much more can also be done to integrate tourist developments with the cultural heritage of their hosting regions, their customs and social fabric.

New trends in global tourism require that tourism developers in the tropics take an environmentally conscious stance if they do not want to undermine the base on which they operate. Developers of tropical resorts have to meet the demand to accommodate growing flows of people who arrive there with quite specific expectations. An important, if not rather obvious, observation to be made is that tourists go to a resort for leisure. They try to break away from their everyday work, everyday life and everyday environment. Tourists tend to contrast everything left behind with the time spent in the resort. Part of the holiday excitement is derived from experiencing the tropics indeed, the tropics as they really are, hot,
often humid, and sometimes rainy as well. The provided accommodation should make that experience possible at a somewhat comfortable level – home levels of comfort are seldom required. Another obvious but often-overlooked fact is that visitors are very different from the local residents. Their expectations are driving their perceptions and have the ability of modifying them to a large extent. This fact could and should be utilised in the resort plan and design to work with the environment rather than against it.